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Abstract 

Global microwave rainfall retrievals from a 5-satellite constellation, including TMI from 

TRMM, SSWI ftom DMSP F13, F14 and F15, and AMSR-E from EOS-AQUA, are assimilated 

into the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) 

using a 1-D variational continuous assimilation (VCA) algorithm. The physical and dynamical 

impact of rainfall assimilation on GEOS analyses and forecasts is examined at various temporal 

and spatial scales. 

This study demonstrates that the 1-D VCA algorithm, which was originally developed and 

evaluated for rainfall assimilations over tropical oceans, can effectively assimilate satellite 

microwave rainfall retrievals and improve GEOS analyses over both the Tropics and the 

extratropics where the atmospheric processes are dominated by different large-scale dynamics 

and moist physics, and also over the land, where rainfall estimates from passive microwave 

radiometers are believed to be less accurate. 

Results show that rainfall assimilation renders the GEOS analysis physically and dynamically 

more consistent with the observed precipitation at the monthly-mean and 6-hour time scales. 

Over regions where the model precipitation tends to misbehave in distinctly different rainy 

regimes, the 1-D VCA algorithm, by compensating for errors in the model’s moist time-tendency 

in a 6-h analysis window, is able to bring the rainfall analysis closer to the observed. The 

radiation and cloud fields also tend to be in better agreement with independent satellite 

observations in the rainfall-assimilation m especially over regions where rainfall analyses 

indicate large improvements. 

Assimilation experiments with and without rainfall data for a midlatitude fi-ontal system 

clearly indicates that the GEOS analysis is improved through changes in the thermodynamic and 

dynamic fields that respond to the rainfall assimilation. The synoptic structures of temperature, 

moisture, winds, divergence, and vertical motion, as well as vorticity are more realistically 

captured across the front. Short-term forecasts using initial conditions assimilated with rainfall 

data also show slight improvements. 
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1. Introduction 

Global analyses as their quality continues to improve can be an important resource for 

analyzing multi-scale variability of the global hydrologic cycle and radiative energy budgets. By 

assimilating available observations into numerical weather prediction (NWP) models, it is 

possible to not only improve initial conditions for short-range forecasts but also gain useful 

information about model deficiencies. In the past decades space-borne measurements have been 

able to provide increasingly better global coverage and temporal sampling. Satellite observations 

of surface rainfall, vertical heating profiles, and cloud distributions are among a few most 

important variables that directly link to global water and energy cycle and the model's moist 

physics. Assimilating these new types of satellite observations into NWP models has become a 

challenge task. Although there are still significant uncertainties in these remotely-sensed 

measurements, tremendous effort has been expended to assimilate rainfall retrievals andor rain- 

affected radiance as a first step to use satellite observation on precipitating/cloud processes to 

improve forecasts of severe weather events and short-term climate changes (e.g., Chang and Holt 

1994, Zupanski and Mesinger 1995, Zou and Kuo 1996, Tsuyulu 1996a, b, 1997, Treadon 1997, 

Fillion and Errico 1997, Xiao et al. 2000, Macpherson 2001, Hou et al. 2000a, b, Krishamurti et 

al. 2000a, b, Hou et al. 2001, Pu et al. 2002, Fillion 2002, Marecal and Mahfouf 2002, Marecal et 

al. 2002, Hou et al. 2004, Moreau et al. 2004, Pu and Tao 2004, Andersson et al. 2005, etc). 

In recent years, variational algorithms have been the method of choice in global and 

regional weather forecast systems to assimilate satellite rainfall observations (e.g., Zupanski and 

Mesinger 1995, Tsupki 1996a, b, 1997, Hou et al. 2000a, b, Xiao et al. 2000, Marecal and 

Mahfouf 2000, Hou et al. 2001, Pu et al. 2002, Marecal et al. 2002, Marecal et al. 2002, Hou et 

al. 2004, Moreau et al. 2004, Pu and Tao 2004, Andersson et al. 2005). For example, by 

modifjring the convective parameterization and substantially reducing the discontinuities in the 

treatment of the moist processes, Zupanski and Mesinger (1995) examined the benefit of 

assimilating precipitation data, and showed a fast convergence of their minimization process and 

an improvement of the precipitation forecast in midlatitudes. By assimilating rainfall information 

in a mesoscale model to get an better control of initial and lateral boundary conditions, Zou and 

Kuo (1996) demonstrated that the locations and intensities of many observed mesoscale features 
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can be better captured comparing with the one with conventional initialization procedures. 

Tsuyulu (1996a, 1996b, 1997) investigated the performance of a 4-DVAR technique in the 

Tropics by assimilating satellite-derived precipitation rates. His results indicated positive impacts 

on the tropical analyses of divergence, moisture and lower-troposphere vorticity, as well as 

precipitation forecasts. The European Center for Medium-Range Weather Forecasts (ECMW) 

evaluated different variational assimilation techniques on rainfall retrievals ranging fkom 1 - 
DVAR, to 4-DVAR, as well as direct assimilation of rain-affected radiance (e.g., Marecal and 

Mahfouf 2000, Marecal and Mahfouf 2002, Marecal et al. 2002, Marecal and Mahfouf 2003, 

Moreau et al. 2002, Andersson et al. 2005), and all of these approaches showed promising 

improvements on the analyzed and forecasted dynamic and thermodynamic fields in tropical 

cyclones and midlatitude weather systems. 

One assumption commonly used in many variational assimilation studies is that the 

model dynamics and physics are perfect, and the error in the initial condition is dominant. If the 

error in the initial condition can be minimized, a good forecast can then be achieved. Many 4- 

DVAR studies using satellite rainfall observations adopt the perfect model assumption to 

minimize errors in the initial condition, and have demonstrated improved forecasts and analyses. 

A tangent linear model is usually introduced to describe the time evolution of the perturbation 

solution linearlized around the basic state of a full nonlinear trajectory. As pointed out by 

Marecal and Mahfouf (2003), the model physics especially for the convection and microphysics 

parameterizations which are vital to rainfall and cloud assimilations, however, may contain many 

highly nonlinear processes and discontinuities which are typically characterized by on\off 

processes. Considering that model physical parameterizations are numerical approximations to 

nature with many empirical formula and assumptions, simplifjmg these complicated physical 

parameterizations so that they can be linearlized for use in the adjoint model will certainly make 

the model physics further imperfect. Such problems, if not carefully controlled, could often lead 

to large departure of the model-predicted rain rate from the observed and severely limit the 

effective utilization of available satellite observations. 

In addressing some of the concerns with assimilating rainfall data using the perfect model 

assumption, Hou et al. (2000a, b, 2001, 2004) developed a 1-D variational continuous 
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assimilation (VCA; Derber 1989) algorithm for assimilating tropical rainfall data using the model 

as a weak constraint. The scheme employs a precipitation observation operator based on a 6-h 

integration of a column model of moist physics along with prescribed large-scale forcing fkom 

the full model, and use moisture/temperature time-tendency corrections as the control variables 

to offset model deficiencies. The tendency corrections due to the rainfall assimilation are in 

addition to those due to the conventional data assimilation, and the error in the model moist 

physics is considered dominant. Such a methodology, by using satellite rainfall observations to 

compensate for the error in the model state variables, provides a useful way to identifl 

deficiencies in the model moist physics. Their results have shown that the 1D VCA scheme is 

effective for assimilating rainfall data in the Tropics, where the model precipitation is known to 

be sensitive to parameterized moist physics in a vertical column. Along with improved rainfall 

analyses and forecasts, the monthly statistics of radiative fluxes, clouds, and total precipitable 

water (TPW) are in better agreement with independent satellite observations. 

The extent to which global analysis and forecast can be improved depends not only on the 

assimilation method but also on the temporal sampling and spatial coverage of observations. The 

Global Precipitation Measurement (GPM) mission being planned for the beginning of the next 

decade is based on the concept of providing frequent global precipitation measurements using a 

space-borne precipitation radar as a calibrator of a constellation of passive microwave 

radiometers. GPM is designed to extend the successful Tropical Rainfall Measurement Mission 

(TRMM) in the tropics to higher latitudes, but with better temporal sampling and more accurate 

precipitation measurements. As a precursor to GPM, this study examines the impact of 

assimilating microwave rainfall retrievals fkom the current fleet of 5 satellites using the 1 -D VCA 

methodology developed by Hou et al. (2000a, 2004). We will evaluate the impact of assimilating 

6h rain accumulation on global analyses produced by the Goddard Earth Observing System 

(GEOS) in both the Tropics and the extratropics. Particular attention will be paid to the 

effectiveness of the 1-D VCA scheme for rainfall assimilation outside the Tropics, where 

atmospheric processes are governed by multivariate quasi-geostropic dynamics and large-scale 

condensational precipitation. We will investigate the impact of rainfall assimilation on analyses 

in different climate regimes at several temporal and spatial scales. 
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The paper is organized as follows: section 2 introduces the microwave rainfall retrievals 

fi-om various satellites and data preparations for assimilating into the model. Section 3 briefly 

describes the 1D VCA developed by Hou et al. (2000a, 2004) and the NASA GEOS3 system. 

Sections 4 and 5 evaluate the physical and dynamical impact of the rainfall assimilation on the 

GEOS system at monthly time scales, and selected climate regimes at 6-hourly time scales. 

Section 6 examines the impact of rainfall assimilation on analysis and forecast of a midlatitude 

fi-ontal system. Section 7 gives a summary and conclusions. 

2. Satellite precipitation data 

2a Satellites and sensors 

Data from a five-satellite constellation including the TRMM, Defense Meteorological 

Satellite Program (DMSP) F13, F14 and F15, and Earth Observing System (EOS) Aqua 

(formerly named as EOS-PM to signifjr its afternoon equatorial crossing time), are used in this 

study. Detailed information regarding the satellites and sensors is listed in Table 1. 

The Special Sensor Microwave Imager (SSM/I) is one of a suite of sensors flown on the 

DMSP satellites. SSMA is a seven-channel, four-frequency, linearly-polarized, passive 

microwave radiometric system that measures upwelling microwave radiance at 19.35, 22.235, 

37.0, and 85.5 GHz. The DMSP satellite orbits are near circular and sun-synchronous, with an 

altitude of 860 lan and an inclination of 98.8'. These satellites cross the equator at fixed local 

times, and have daylight equatorial crossing times of 6:16, 8:20, and 9:27 Local Time, 

respectively. 

The TRMM satellite was launched in November 1997 to determine the temporal and 

spatial distributions of precipitation and latent heating in the Tropics and subtropics (Simpson et 

al. 1988, Kummerow et al. 1998). TRMM's orbit is circular, with an inclination angle of 35" 

relative to the equator. The satellite visits a given area at low latitudes about once per day, but at 

a different local time every day. The TRMM Microwave Imager (TMI: Kummerow et al. 1998) is 

a multi-channel passive microwave radiometer measuring radiances at five frequencies: 10.7, 

19.4,21.3,37, and 85.5 GHz. 
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The Advanced Microwave Scanning Radiometer-EOS (AMSR-E) is one of the six 

sensors aboard Aqua, which flies in a sun-synchronous orbit with a daylight crossing time of 

13:30 Local Time. It is a passive microwave radiometer, measuring brightness temperatures at 12 

channels and 6 frequencies ranging from 6.9 to 89.0 GHz. 

2b. Rainfall Retrievals 

The microwave rainfall retrievals from TMI, SSWI, and AMSR-E are combined in this 

study to provide better temporal and spatial coverage in both the Tropics and midlatitudes. The 

rainfall retrievals used here are all based on the most recent version of the NASA Goddard 

Profiling (GPROF) algorithm (Kummerow et al. 2001; Olson et a1 2005). Over the ocean, the 

microwave frequencies can probe through smaller cloud particles to measure the microwave 

emission from the larger raindrops. Over land, the sensors can also measure the scattering effects 

of large ice particles that later melt to form raindrops. Based on the radiance contrast between the 

surface and raindrops at the available passive microwave channels, the GPROF algorithm 

physically retrieves the vertical hydrometeor profiles that best fit the observed microwave 

radiance. A library of hydrometer profiles generated by a cloud resolving model is scanned to 

find which profiles are radiatively compatible with the observations; the retrieved profiles, 

including the surface rain rates, is a Bayesian composite of the compatible profiles. 

All the instantaneous rainfall pixel data are horizontally averaged onto l’xl’ grid boxes 

for each individual satellite dataset, and time averaged over 6 h centered on analysis times (0000, 

0600,1200, 1800 UTC). Due to the nearly uniform emissivity of the ocean surface and the large 

emission contrast between the ocean surface and raindrops, passive microwave remote sensing 

generally tends to provide more accurate instantaneous rainfall retrievals at the pixel level over 

the ocean than over the land. However, the grid-box averaged rainfall retrievals from each 

satellite are only snapshots of a l’xl” grid box for duration of a few seconds within the 6h 

analysis window, instead of “true” 6-h averages. Errors due to under sampling could be equally 

severe over both the ocean and the land. Nevertheless, the same observational error covariance is 

applied to the rainfall data over the ocean and the land in both the Tropics and midlatitudes, and 

to rain estimates ftom different satellites. Rainfall assimilation is conducted between 50”s and 
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50"N, so that the impact of satellite rainfall assimilation over different climate regimes, such as 

land vs. ocean, and midlatitudes vs. Tropics, can be evaluated. 

3. The GEOSDAS and 1-D VCA 

3a. GEOS DAS3 system 

The NASA GEOS3 Data Assimilation System (DAS) is used in this study. It consists of 

three major components: an atmospheric general circulation model, the Physical-space Statistical 

Analysis System (PSAS; Cohn et al. 1998), and the Incremental Analysis Update scheme (IAU; 

Bloom et al. 1996). For each analysis times (0000, 0600, 1200, 1800 UTC), the atmospheric 

GCM starts 3 hours earlier and runs forward to produces the first-guess fields at the analysis 

time. The analysis fields and the analysis increments can be computed in a conventional way by 

ingesting observations within each 6-h window through PSAS. By restarting the short-term 

forecast, the IAU scheme gradually inserts an equal fraction of the analysis increments at each 

model time step. Thus the reanalysis is produced with additional tendency corrections that are 

updated by observations. It is found that significant improvements in terms of assimilation 

accuracy, noise control, and the hydrologic cycle spin-up are obtained using the IAU technique 

(Bloom et al. 1996). 

The GEOS3 physics uses an interactive land surface model. The moist parameterization 

includes the relaxed Arakawa-Schubert convective parameterization (Arakawa and Schubert 

1974, Moorthi and Suarez 1992) coupled with a re-evaporation of falling anvil rain, as well as 

large-scale condensational precipitation. The model prognotics and diagnostics are computed at 

1x1 deg resolution in horizontal, and there are 48 layers in the vertical extending from the surface 

to the stratosphere. 

3b. 1-D VCA 

The 1-D VCA algorithm developed by Hou et al. (2000a, by 2001,2004) uses microwave 

rainfall retrievals to formulate additional IAU forcing on time tendencies of temperature and 

moisture to compensate for the systematic errors caused by the model moist physics within a 6-h 

assimilation cycle. The detailed procedure can be found in Hou et al. (2000a, 2004). Essentially, 
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the 1-D VCA seeks to minimize a functional that measures the misfit between the model- 

predicted rain and the observed rain with respect to the temperature and moisture time 

tendencies. For each grid box, the model-predicted rain rate is obtained by performing a 6-h 

integration of a 1-D column model with moist physics. The time tendencies due to processes 

other than moist physics, such as advection, turbulence, and radiation, are prescribed from a 3-h 

forecast by the full GOES DAS3 run from the beginning of the analysis cycle. The minimization 

is performed at each grid box where the difference between the observed 6-h rain rate and the 

model-generated rain are larger than 1 &day. A prescribed vertical structure of the moisture 

analysis increment is introduced to mimic the Jacobian of the 6-h mean precipitation with respect 

to moisture perturbations. Following Hou et al. (2004), the vertical profiles of temperature and 

moisture time-tendency adjustments are assurned to have the same error standard deviations as q 

and T in the GEOS DAS3. 

Shown in Figure 1 are an example of satellite rainfall retrievals from SSM/I, TMI, and 

AMSR-E within one 6-h analysis window centered at 06 UTC, July 1, 2002, along with the 

difference between the column model first guess and the observation, as well as the difference 

between the column model optimized rainfall and the observation. Although there are still 

observational gaps within the 6-h analysis window, the 5-satellite constellation has good swath 

coverage between 50"N and 50"S, and many tropical and midlatitude convective systems can be 

clearly identified over both the ocean and the land. The rainfall minimization scheme for the 

column model is effective in bringing the model estimated rainfall toward to the observation, and 

the reduction in the error std dev is about 32%. 

3c. Experimental designs 

Three parallel assimilation experiments are performed in this study from July 1 to July 31 

2002, with two assimilating rainfall retrievals from the 5-satellite constellation between 50"s and 

50"N. During this period, cloud and radiation data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS, King et al. 2003) and the Clouds and the Earth's Radiant Energy 

System (CERES, Wielicki et al. 1996, 1998) onboard both EOS TERRA and AQUA are 

available, and provide a unique opportunity to evaluate the assimilation results with independent, 

con-current satellite observations on cloud properties and radiative fluxes. The control is the 
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standard GEOS3 assimilation with conventional observations plus SSM/I TPW observations. 

Ocean-Only and Ocean+Land are experiments assimilating satellite rainfall observations, with 

one only assimilating observations over the ocean, and the other assimilating observations over 

both the ocean and the land. The purpose of these two rainfall assimilation experiments is to 

examine the benefit of including rainfall retrieval data over the land where rainfall estimations 

are typically believed to have larger retrieval errors than those over the ocean. 

4. Impact on monthly means 

4a. Surface precipitation 

Satellite retrieved monthly-mean precipitation for July 2002 (Fig. 2a) clearly shows a 

strong Intertropical Convergence Zone (ITCZ) around 10"N extending fi-om the Pacific Ocean, 

across the South America and the Atlantic Ocean, into the equatorial African continent. There is 

another ITCZ over the Indian Ocean and western Pacific about 5-10 degree south of the equator. 

Heavy precipitation can also be noticed over regions where monsoonal rainfall dominates, such 

as the southeast of North America, South and East Asia. Moderate precipitation mainly related to 

baroclinic instabilities can also be seen in higher latitudes in both the hemispheres. 

Figures 2b, 2c, and 2d show the monthly-mean co-located differences between satellite 

observations and online assimilation runs. The control run generally overestimates precipitation 

over broad areas of the tropical western Pacific, the Caribbean Sea, the northern part of the 

Amazon Basin, the India Ocean, and the regions surrounding the Tibetan Plateau, and 

underestimates precipitation over the tropical African continent, the tropical eastern Pacific, and 

the middle-west part of North America along the Rocky Mountain. The rainfall differences are 

especially severe over the Caribbean Sea where satellite observations show very little 

precipitation except over some large islands. Most of the above regions are over open oceans, 

remote land areas, or near big mountains, where surface observations are few or very sparse and 

model physical parameterizations may usually fail to capture what occurs in nature. Therefore the 

big discrepancies over these regions mainly stem fi-om a combination of large systematic errors 

in the model moist physics, and the lack of conventional observations in the control analysis. 
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When Ocean-Only and Ocean+Land rainfall observations are assimilated, both 

experiments show significant improvements around most areas where the data are assimilated, 

indicating the efficiency of the 1-D VCA algorithm bringing the model analysis toward the 

observations. Overall, the rainfall assimilation between 50"s and 50"N enhance the spatial 

correlation of the monthly-mean precipitation with observations fiom 0.69 to 0.84, and reduce 

the error STD dev by 30% for the Ocean+Land experiment. These statistics are comparable to 

those fiom earlier studies over the Tropics by Hou et al. (2000a, b). Although land observations 

are not assimilated and rainfall discrepancies over the land are essentially unchanged in Fig. 2c, 

the Ocean-Only experiment still enhance the spatial correlation of the monthly-mean 

precipitation to 0.74, and reduce the error std dev by 14%. Similar to what noticed in Hou et al. 

(2000% b), the 1-D VCA algorithm tends to be more effective in reducing the precipitation 

intensity than enhancing it in matching the GEOS analysis with the microwave rainfall retrievals. 

Table 2 compares the statistics of the three experiments over the Tropics and the 

midlatitudes. Here the Tropics is defined as the area between 30"s and 30"N, while the 

midlatitude is defined as the area between 30" and 50" in the two hemispheres. Table 2 shows 

that the control experiment tends to overestimate the observed monthly mean rain rate by about 

37% in the Tropics, suggesting large model systematic errors in the Tropics where precipitation 

is mainly governed by the model's convective parameterization. On the other hand, the control 

experiment tends to underestimate the observation by 8% in midlatitudes where the large-scale 

precipitating process dominates. As more and more satellite rainfall retrievals covering the 

extended area are assimilated in the analysis, the error std dev. become smaller, and the 

correlation between the analysis and the observation increases in both the Tropics and 

midlatitudes. 

Many earlier rainfall assimilation studies only used rainfall retrievals over the ocean since 

the microwave rainfall estimation over the land usually has larger retrieval errors due to the 

irregularity of the land surface, and the weak radiance contrast between the land surface and 

raindrops. A few interesting questions that remain to be explored are: will assimilation of 

accurate oceanic rainfall observations be beneficial to model analyses over the land at monthly- 

mean time scales? In other words, even the satellite rainfall retrievals over the land are believed 
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to have larger retrieval errors (typically in terms of precipitation intensity), do they still have 

some positive impacts on the model analyses over the land, especially in terms of the location of 

deep convection? Table 3 compares the precipitation statistics of the three experiments over the 

ocean and the land, and suggests that at the monthly time scale, the benefit of rainfall 

assimilation in terms of the precipitation distribution is more or less limited over the area where 

the observations are actually assimilated in the analysis. For example, the error STD dev and 

correlation are nearly identical over the ocean for the Ocean-only and Ocean+Land experiments. 

The precipitation statistics over the land are improved by about 33% only after the rainfall 

observations over the land are assimilated in the analyses. Therefore, even the current microwave 

rainfall estimations may have larger retrieval errors over the land than those over the ocean; it is 

important and helpful to assimilate them to improve model analyses over the land. 

4b. Moisture and temperature structure 

As discussed in Hou et al. (2000a, b, 2004), the 1-D VCA algorithm compensates for 

systematic errors in the model moist physics through temperature and moisture tendency 

corrections. It is found that the moisture tendency correction is much more effective than the 

temperature tendency correction by bringing the model-predicted rainfall closer to observations. 

For single points where the model-predicted rain rate overestimates (/underestimates) the 

observed, the algorithm tends to redistribute the moisture in the vertical so that the low level 

becomes drier (/more moist) and the upper level becomes more moist (drier). 

It is highly desirable that the zonal-mean temperature and moisture structure in the 

analyses can be evaluated against rawinsonde observations to verify the generalization of the 

assumed vertical structure of analysis increment. Due to the lack of data, we first examine the 

zonal mean monthly difference of mixing ratio and temperature structure between the 

assimilation run and the control in Figure 3. The zonal mean precipitation (Fig. 3a) indicates that 

while the rain rate in the control run overestimates the observed rain rate by about 2 mm/day in 

the Tropics between 10"s and 35"N and underestimates the observed rain rate by less than 1 

d d a y  in midlatitudes of the Northern Hemisphere, the rain rate in the rainfall-assimilation run 

tends to be in good agreement with the observed, especially in the Tropics. Reduction of the 

tropical precipitation in the rainfall-assimilation run leads to a drier planetary boundary layer 
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(PBL) below 900 hPa, and a more moist low troposphere between 700 and 900 hPa, as well as a 

slightly drier middle and upper troposphere; Increase of the midlatitude precipitation in the 

Northern Hemisphere leads to a more moist low troposphere below 700 hPa centered near 900 

hPa, and a drier atmosphere above centered at 600 hPa. The temperature increment is generally 

very small in the Tropics and midlatitudes of the Northern Hemisphere, with a weak warming 

below 800 hPa and a cooling above. 

The precipitation observation does not contain explicit inforrnation in the vertical. The 

structure of the analysis increment is mostly determined by the background error covariance and 

moist physics Jacobian during the minimization. Since the tendency corrections are applied to the 

non-linear model trajectory, they will have complex impact on the short-term forecasts, and have 

influence on the subsequent analysis using the forecasts as first guess fields. It is important to 

monitor the observation minus first-guess residuals in model state variables, particular to their 

vertical distribution when precipitation assimilation is applied. The monthly mean biases and 

error standard deviations of the 6-h 0 - F residuals for temperature and mixing ratio are also 

computed for the 3 assimilation experiments over the Tropics and extra-tropics, the land and 

ocean. Since the difference in the temperature biases and error standard deviations are very small, 

we only show mixing ratio biases and error standard deviations for the control (solid line) and 

Ocean+Land (dashed line) experiments in Figure 4. The rainfall assimilation, except at 850 hPa 

for the profiles averaged over midlatitude and land, generally leads to smaller standard deviations 

of the moisture 0 - F residual. 

4c. Radiative fluxes 

The CERES instruments are improved models of the Earth Radiation Budget Experiment 

(ERBE; Barkstrom 1984) scanner instruments, which can also provide additional cloud and 

surface flux information (Wielicki et al. 1996, 1998). The CERES ES-8 instantaneous pixel data 

&om EOS TERRA and AQUA are merged and mapped onto a 1"xl" grid at 6-h intervals for July 

2002 to compare with the Top-of-the-Atmosphere (TOA) radiative fluxes fkom the GEOS 

reanalysis. 
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The cloud radiative forcing, which was defined by Ramanathan et al. (1989) as the 

difference between the cloudy-sky and the clear-sky fluxes, has been frequently used to evaluate 

the cloud effect on the climate. However, the observed instantaneous clear-sky flux does not 

exist under the cloudy-sky situation. Monthly-mean clear-sky fluxes are usually estimated by 

either using limited observational samples of clear-sky situations within that month, or running a 

radiation code for no-cloud situations using observed temperatwe and moisture profiles. In order 

to better understand the impact of rainfall assimilation on radiative fluxes and clouds, we first 

evaluate changes in clear-sky radiative fluxes by comparing the rainfall assimilation run with the 

control run (not shown), and notice that the monthly-mean differences of TOA clear-sky 

longwave and shortwave fluxes from the two GEOS analyses sampled at CERES swathes are 

generally very small. Except for some small and scattered land areas, the differences of TOA 

clear-sky longwave fluxes are generally less than 2 Wm-2, and the differences of TOA clear-sky 

shortwave fluxes are generally less than 0.5 Wm-2. Such small differences indicate that the clear- 

sky radiative fluxes are not sensitive to the direct changes in temperature and moisture profiles 

corrected by rainfall assimilations, at least at monthly time scales. 

Figure 5 compares the July TOA cloudy-sky longwave flux from the GEOS Control and 

Ocean+Land against the observations derived from CERES ES-8. A positive OLR bias exists in 

both analyses, mainly concentrating in the subtropical and midlatitude landmass, the extratropical 

ocean in the southern Hemisphere, and the eastern Pacific, as well as the highly convective 

central Indian Ocean and western Pacific. 

The global mean OLR values from the Control and Ocean+Land overestimate the CERES 

data by 4.4 and 6.3 W m-2, respectively. As expected, the analysis improvement due to rainfall 

assimilation is generally small over those less convective regions. On the other hand, 

corresponding to the excessive model precipitation over the Caribbean Sea, the South America 

Amazon Basin, and the equatorial central Pacific, the OLR from the control run (Fig. 5b) tends to 

significantly underestimate the observations. The largest discrepancy is more than 40 Wm-2, 

suggesting an overestimation of cloud population and/or cloud top heights over these regions. 

After rainfall observations are assimilated (Fig. 5c), the negative OLR bias related to the 
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excessive precipitation is significantly reduced, and the OLR error STD dev is reduced fiom 11.9 

to 9.3 W m-2, which is about a 22% improvement. 

Analyzed TOA shortwave flux (Fig. 6)  generally has large negative bias over the ocean 

east of the major continent where precipitation is small. This bias is mainly related the systematic 

errors fi-om the model parameterization of non-precipitating stratocumulus and processes that are 

not closely related to the precipitating physics, and therefore is difficult to be corrected by the 

rainfall assimilation scheme. Over the region where the rainfall assimilation has large changes in 

the analyzed rain rate, the bias in TOA shortwave flux is reduced, and the mean spatial error STD 

dev is reduced fi-om 37.5 to 31.5 W m-2. 

Therefore, although the clear-sky radiative fluxes are not sensitive to the direct changes in 

temperature and moisture profiles corrected by rainfall assimilation, improvements in the cloudy- 

sky longwave and shortwave fluxes in the rainfall-assimilation run clearly imply that these 

improvements are accomplished mainly through improved model clouds that are very sensitive to 

small changes in temperature and moisture profiles. 

The monthly-mean spatial statistics of GEOS TOA longwave and shortwave fluxes 

against CERES ES-8 data, in the Tropics and midlatitudes, and over the ocean and the land, are 

further summarized in Table 4. Similar to what shown in the precipitation statistics, the rainfall 

assimilation consistently improves the analysis of the TOA radiative fluxes through reducing the 

error standard deviation and increasing the spatial anomaly correlation. As long as microwave 

rainfall retrievals are being effectively utilized, the rainfall assimilation tends to have a positive 

impact on the GEOS analyses on radiation fields. 

4d. Clouds 

In GEOS3, convective and large-scale cloud fi-actions, which are used for cloud-radiation 

computations, are determined diagnostically (L. L. Takacs, personal communication): Convective 

cloud fi-actions produced by RAS are proportional to the detrained liquid water amount, while 

large-scale cloudiness is defined, following Sling0 and Ritter (1985), as a function of relative 

humidity. The total cloud fi-action in a grid box is determined by the larger of the two cloud 

fi-actions. The MODIS level-2 global cloud products combine advanced infrared and visible 
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technique to determine both physical and radiative cloud properties (King et al. 2003). The 

MODIS cloud fraction data are produced by the infrared retrieval methods both day and night at 

5x5 1-km-pixel resolution. High-resolution MODIS pixel data from both Terra and Aqua are 

merged and mapped onto a 1 O x 1 "  grid at 6-h intervals for July 2002. 

Figure 7 shows the observed MODIS total cloud fraction in unit of percentage, and the 

differences between GEOSDAS runs and observations. The observed total cloud fraction is 

generally above 80% in midlatitude storm tracks, and tropical oceans and lands where deep 

convection dominates. Large total cloud fraction can also be seen in the subtropical oceans west 

of major continents where non-precipitating stratocumuli persist. These features are 

quantitatively consistent with earlier climatological data over the ocean from the International 

Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer 199 1) and the Comprehensive 

Ocean-Atmosphere Data Set Project (COADS). Over the subtropical Afi-ican continent, 

Australia, Middle East and the west coast of North America where the large-scale subsidence 

dominates and rain rates are generally low, the total cloud fraction is generally below 20%. Over 

other parts of major continents, the total cloud fraction has large variability, and typically ranges 

from 30% to 70%. Unlike precipitation and radiative fluxes which show consistent 

improvements over broad areas after rainfall assimilations, the error std dev. of the total cloud 

fraction in the rainfall-assimilation run only decreases slightly, partly due to the inclusion of a lot 

of non-precipitating clouds that are difficult to be modified by the rainfall assimilation. However, 

over areas where the assimilation run shows significant improvements in precipitation (e.g., the 

Caribbean Sea), there is indeed evidence that the model total cloud fraction as well as the high 

cloud fraction (not shown here) become closer to the MODIS observations. 

5. Impact on 6-hourly time series 

While the monthly-mean comparisons provide valuable information on the physical 

impact of the rainfall assimilation algorithm, it is possible, however, for the analysis to produce 

realistic mean states for the wrong reasons. For example, the mean rain rate and its spatial 

standard deviation can not tell the sequential distributions of intensity and frequency of rain 

events within an individual month, and it is likely that a region characterized by frequent light 
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rain events has the sarne monthly mean rain rate as a region with less fi-equent but heavier rain 

events. With enhanced satellite sampling rates, we further evaluate the performance of the 1-D 

VCA algorithm in this section on 6-hourly time scales over selected climate regimes where (1) 

the control monthly mean rain rate overestimates the observed, and (2) the control monthly mean 

rain rate underestimates the observed. 

As shown in earlier sections, the rainfall-assimilation run indicates considerable 

improvements in term of monthly-mean rain rate over the Caribbean Sea where the satellite 

retrievals show little precipitation. The time series of precipitation at 81"W, 19"N (Figure 8) 

confirms that the observed rain rate (thin line with open circle) was very small. Except for 3-4 

short-duration rain events with rain rates slightly less than 5 &day, rain rates at all the other 

periods were close to zero. The control run significantly overestimates the observed rain rate 

throughout most of the month, with fi-equent heavy rain events that may sometimes reach 70 

&day. The 1-D VCA scheme is in general very effective in bringing the analyzed rain rate 

toward to the observed, and the root-mean-square (RMS) error reduces from 23.8 to 9.3 &day. 

Corresponding to the reduced rain rate in the assimilation run, the TOA longwave flux increases 

with a few occasions in which the OLR values may change dramatically fi-om 150 Wm-2 to 270 

Wm-2. The TOA reflected shortwave flux and high cloud fractions also show reasonable 

reductions, and are in better agreements with radiation and cloud data derived from CERES and 

MODIS. 

Similar plots over the tropical Afican continent (21"E, 8"N) where the control tends to 

underestimate the observed rain rate (Figure 9) indicate that several deep convective rain events 

occurred in early and late July are totally missed in the control analysis, possibly due to the lack 

of conventional surface and upper-air observations. The model moist physics only produces a 

few scattered light to moderate rain events over this tropical rain forest area where deep 

convection fi-equently occurs. The TOA radiative fluxes and high cloud fi-action also suggest 

similar bias. After satellite rainfall retrievals are assimilated, the big rain events can be clearly 
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noticed, and the sequence of convective development over the tropical summer continent is in 

better agreement with the observations. 

Another interesting climate regime is over the western Pacific warm pool where the 

control run overestimates the observed monthly-mean rainfall by about 4-8 &day. Figure 10 

shows the 6-hourly time series of precipitation, along with the difference of mixing ratio, TOA 

longwave and shortwave fluxes between the rainfall assimilation run and the control run at 

160"E, 10"N. Satellite rainfall retrievals show that there were a series major precipitating systems 

passing by the grid box between July 3rd and July 7th, 2002. Except for two 2-day disturbances 

around July 15th and July 18th, the warm pool was generally dominated by light-rain events 

following the passage of the early-July major convective system. These features appear to be 

similar to the earlier findings from the Tropical Ocean Global Atmosphere Couple Ocean- 

Atmosphere Experiment (TOGA COARE, Webster and Lukas 1992) that following major 

convective events associated with the westerly wind burst, there was usually a long period of 

clear-sky light wind situations with scattered shallow cumuli and trade wind clouds dominating 

over the warm pool (Lin and Johnson 1996, Johnson and Lin 1997). Re-evaporation of these 

episodic shallow clouds tends to gradually moisten the lower troposphere, along with slowly 

recovering sea surface temperatures, providing a favorable condition for organized deep 

convection to occur at later times. Such a sequence has also been considered as a possible 

mechanism (Blade and Hartmann 1992, Kemball-Cook and Weare 2001) to explain the onset and 

development of the Intra-seasonal Oscillation (ISO, Madden and Julian 1972, 1994). In contrast, 

the control run shows fiequent, heavy rain events over the warm pool with rain rates typically 

above 20 &day during the observed light-rain periods, a clear indication that the convection 

parameterization used in GEOSDAS tends to produce too many deep convective clouds that 

generate fiequent heavy-precipitating events. After the rainfall assimilation, the analyzed rain 

rates generally agree better with the observed, especially during the light rain period in mid- and 

late July. The vertical mixing ratio difference plot clearly indicates more drylng in the PBL which 
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suppresses the population of deep convective clouds, and more moistening at lower troposphere 

which could be caused by enhanced evaporation from an increased shallow cumuli population. In 

addition, both TOA longwave and shortwave fluxes show reduced RMS errors. Although it is 

outside of the focus of this study, we can expect that the intraseasonal signals, which are not well 

presented in many GCMs and operational model reanalyses, will be better illustrated in the 

rainfall assimilation analysis. 

In summary, physical parameterizations of moist processes used in climate and NWP 

models are formulated under simplified assumptions and conditions using observations from 

limited field experiments, and may have large systematic errors in different climate regimes. At 

regions where the model moist physics tend to behave badly under distinctly different raining 

regimes, not only is the analyzed rain rate brought closer to the observed, but also the 

thermodynamic and cloud radiative features are more physically consistent. These provide some 

solid evidence that the 1-D VCA algorithm can indeed compensate for some of the systematic 

errors in the model’s moist physics. 

6. Impact on the analysis and forecast of a midlatitude frontal system 

Improving analysis and forecasting skills on various weather events is the ultimate goal of 

data assimilation and it also serves as an important test for the assimilation algorithm and model 

physics. Since Hou et al. (2004) has examined the impact of the 1-D VCA algorithm on 

hurricane forecasts and found that the rainfall assimilation led to more realistic hurricane 

structure and better 5-day hurricane track prediction and precipitation forecasts, in this section we 

perform a similar analysis to further explore the impact of rainfall assimilation on improving the 

synoptic analysis and forecast of a midlatitude frontal system. 

6a. Frontal system history and the impact on synoptic analysis 
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In Figure 11, satellite rainfall retrievals, and the analyzed precipitation, 200 @a wind 

vectors, and 500 hPa geopotential heights, as well as their differences between the control and 

rainfall-assimilation runs are presented to illustrate the evolution of the midlatitude frontal 

system from 18 UTC, 4 July to 18 UTC, 9 July 2002. In the northern hemisphere summer, a 

strong subtropical high persists over the eastern Pacific. It usually interacts with the eastward- 

propagating midlatitude baroclinic waves by transporting the lower-latitude moisture northward 

and forms frontal-like convective systems. At 18 UTC, 4 July (Fig. lla), observations show a 

large, northeast-southwest oriented rain band near the Dateline extending from 170"E to 170"W. 

There was another bow-shaped precipitating system at 140"W which was related to a dissipating 

frontal system developed at an earlier time but will not be discussed in this study. 

Both the control and precipitation analyses show the rain band near the Dateline at about 

the right observed position, although rainfall was more scattered and less intensive in the control 

analysis. The largest discrepancies are in the fields of 500 hPa geopotential height and 200 hPa 

wind: the control run shows a strong subtropical high with a ridge extending deeply into 

midlatitudes. The rain band was located close to the west side of the subtropical high center with 

strong-wind areas behind. ARer a few days of continuous rainfall assimilations starting at OOZ, 1 

July, the precipitation analysis at 182, 4 July shows a more reasonable thermodynamic and 

kinematic structure: 500 hPa geopotential height shows a low in midlatitudes centering at 175"E, 

46"N, with the subtropical high centered at 160"W, 30"N. The frontal rain band was located in 

between the low and high, and was characterized by large temperature gradients and strong 

southwesterly enhanced by both the cyclonic flow by the low and the anticyclonic flow by the 

high. 

As the midlatitude low gradually moved eastward with time, the cyclonic flow was de- 

coupled with the anticyclonic flow surrounding the subtropical high. The rain band was separated 

into two parts with the southwest part staying on the west side of the stationary subtropical high 

and the northeast part behaving as a midlatitude frontal system continuously moving eastward 
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along with the midlatitude wave. At 1800 UTC, 7 July (Fig. 1 lb), the midlatitude frontal rain 

band evolved in a spiral form around a low in 500 hPa geopotential height. Both the control and 

rain-assimilation analyses show a deepening low centered at 155"W, 47"N with similar order of 

amplitudes. While the frontal rainfall distribution in the precipitation analysis is in good 

agreement with the observed, the control only shows two small raining areas in front of the 

trough. This underestimation problem persists in the control analysis when the frontal system 

reached its mature stage at 06 UTC, 8 July (Fig. llc), although the large-scale features such as 

the 500 hPa geopotential height and the 200 hPa wind vector appear to be similar between the 

control and rainfall-assimilation runs. Again, the frontal rain band in the rainfall-assimilation run 

is better presented, and agrees well with the satellite observations in terms of the system position 

and precipitating intensity. As the system continuously propagated eastward along with 

midlatitude westerlies (Fig.1 Id), the low started to weaken as it approached the west coast of 

North America, with another heavy raining system entering the selected domain from the west. 

Figure 12 further shows the rms errors and spatial correlations of 6-howly averaged rain 

rate from the control (solid lines) and rainfall-assimilation (dashed lines) analyses, respectively, 

with combined satellite rainfall retrievals used for verifications. After rainfall assimilations, the 

rainfall rms errors associated with the midlatitude frontal system are reduced by about 1-3 

&day, and the correlation increased from 0.35 to 0.6, a 50% improvement. 

As shown in Figure l lc ,  the observed frontal rain band was oriented in the northeast- 

southwest direction with relatively uniform precipitation rates (15 d d a y )  along the front at 

0600 UTC 8 July. At this stage, the control analysis shows little precipitation at the leading edge 

of the front, while the rainfall-assimilation run agrees well with observations. Since the control 

and the rainfall assimilation runs show drastic differences in precipitation, we focus on this time 

to examine the impact of rainfall-assimilation on the vertical structure of the frontal system. 

Figure 13 shows vertical cross sections of temperature, mixing ratio, relative vorticity, and 

vertical motion from the control and the rainfall-assimilation runs across the frontal system 
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between 153"W, 47"N and 140"W, 36"N, along with their differences. Analyzed surface 

precipitation is also included to indicate the location of the frontal rain band for both control and 

rainfall-assimilation runs. Associated with enhanced frontal precipitation in the rainfall- 

assimilation run, temperature is increased by 0.5-2 K at low levels between 975 and 900 hPa, and 

decreased by 0-1 K above between 850 and 400 hPa in the raining areas. Correspondingly, 

mixing ratio is also increased by about 1-2 g/kg at low levels and decreased by 0-1 g/kg between 

800 and 650 hPa over the raining area. Such a large increase in both temperature and moisture at 

low levels, along with a cooler middle troposphere, significantly increase the convective 

available potential energy (CAPE) and lead to a stronger upward motion in the rainfall- 

assimilation run. The omega plot clearly indicated an enhanced upward motion resulted from the 

rainfall assimilation with amplitude of 100 hPa/day at the leading edge of the front. Larger 

positive vorticity can also be noticed, especially at low levels. 

Behind the frontal rain band, although neither observations nor analyses show any 

precipitation, the impact of rainfall assimilation on the thermodynamic and kinematic structure of 

the midlatitude frontal system is still very prominent. The rainfall-assimilation run indicates a 

temperature decrease of about 0-1 K at both the low level and between 650 and 400 hPa. 

Compared with the control run, there is a larger temperature gradient, which suggests an 

enhanced frontogenesis, at low levels across the front with an amplitude of lWl00 km at about 

925 Wa. The moisture difference plot shows an interesting feature: mixing ratio is increased by 

1-2 g/kg at low levels behind the frontal rain band but capped by a strong drying between 650 

and 800 hPa, and such a low-level moisture increase can extend several hundred kilometers 

behind. One possible explanation is that the rain evaporation tends to increase the low-level 

moisture but it is capped by strong large-scale downward motion behind the frontal rain band, as 

seen in Figure 13b. 

66. Impact on the forecast 
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Since the rainfall assimilation can modify the analyzed thermodynamic and kinematic 

fields, especially at low levels, so that they are more physically and dynamically consistent with 

observations, we perform parallel forecasts on this midlatitude frontal system initialized with the 

control and rainfall analyses to further examine the impact of these changes on the forecasts. As 

shown in Figure 12 that the rainfall-assimilation analysis generally have lower RMS errors and 

higher spatial correlations in precipitation than the control run within a 25" in latitude x 60" 

longitude domain, we issue four 5-day forecasts 24 h apart using the initial conditions from 0300 

UTC 5 July to 0000 UTC 8 July 2002, and the rainfall-assimilation analyses are used for 

verifications. 

Figure 14 show the RMS and anomaly correlation of a 5-day forecast of sea level pressure, 

precipitation, and 500 hPa geopotential height initialized using 0300 UTC 6 July analyses. The 

RMS errors and anomaly correlation of forecasted sea level pressure associated with the 

midlatitude frontal system are very similar between the control and rainfall-assimilation runs. 

Similar plots for the 500 hPa geopotential height also indicate similar RMS errors and anomaly 

correlations for the first 3-day forecasts, but the rainfall assimilation run tends to have a 

significantly smaller RMS errors and higher correlations at Day 4 and Day 5. The precipitation 

forecast initialized from the rainfall-assimilation analysis indicates some improved forecasting 

skills over the control during the first 1-2 days, but the forecasting skill for the midlatitude frontal 

system shows little improvement. 

7. Summary and Conclusions 

In earlier studies, a 1-D VCA algorithm was developed to assimilate 6-h averaged 

rainfall observations over tropical oceans in the GEOS3 DAS (Hou et al. 2001a, b, 2004), with a 

focus to improve tropical analyses and forecasts. This 1-D VCA scheme uses temperature and 

moisture tendency corrections as control variables to minimize the misfit between the observed- 

and the model-predicted rain rates. Through a gradual insertion of additional temperature and 

moisture forcing resulted from the rainfall assimilation, the scheme can effectively compensate 
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for some model deficiencies due to imperfect moist physics so that the tropical analysis and 

forecast are more physically and dynamically consistent with observations. 

With enhanced satellite rainfall observations available, this study explores the 

performance of the rainfall assimilation algorithm over broad areas of the globe, and extends the 

investigation over tropical oceans into the extratropics where the atmospheric processes are 

governed by the quasi-geostropic dynamics and large-scale condensational precipitation 

processes, and land areas where microwave rainfall estimations are believed to be less accurate 

than those over oceans. 

Satellite microwave rainfall retrievals from a 5-satellite constellation, including TRMM 

TMI, SSWI from DMSP F13, F14 and F15, and AMSR-E on EOS-AQUA, are assimilated into 

the NASA GEOSDAS. Three parallel assimilation runs, namely, the Control for the run with 

only conventional observations assimilated, the Ocean-Only and Ocean+Land standing for the 

assimilation run WitWwithout rainfall assimilation over the land, are conducted and compared 

with each other. The physical and dynamical impact of rainfall assimilations on the GEOS 

reanalyses are evaluated against independent satellite observations over both the Tropics and 

midlatitudes at different temporal and spatial scales. 

Monthly-mean results indicate that large rainfall discrepancies between the Control and 

observations mainly stem from a combination of large systematic errors in the model moist 

physics, and the lack of conventional observations in the control analysis. When microwave 

rainfall retrievals are assimilated, there are significant improvements in the precipitation analysis 

over most areas where the rainfall data are assimilated. The 1-D VCA algorithm, through 

compensating for systematic errors in the model moist physics, is effective over both the Tropics 

and extratropics where the atmospheric processes are dominated by different dynamics and moist 

physics, and the ocean and the land where rainfall observations have different retrieval error 

characteristics. Although the rainfall estimation over midlatitudes and land areas may have larger 

retrieval errors than those over tropical oceans, assimilating the microwave rainfall information 

still has large positive impacts on the GEOS analysis. This will provide important guidance for a 

more effective use of satellite rainfall measurements over the entire globe. 

Model diagnosed TOA longwave and shortwave fluxes, and total cloud fractions are 

evaluated against independent satellite observations from CERES and MODIS. Although the 
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model cloud parameterization has large systematic errors that are difficult to be corrected by the 

rainfall assimilation alone, TOA longwave and shortwave fluxes, and cloud fractions do indicate 

noticeable irnprovements, in particular over regions where rainfall analysis shows significant 

improvements. 

The physical and dynamical impact of rainfall assimilation on the GEOS analysis are 

further evaluated on 6-h time scales over selected regions where the model moist physics tends to 

behave badly under distinctly different raining regimes. In particular, over the western Pacific 

warm pool where the model moist physics tends to produce frequent, excessive precipitation with 

unrealistically large amount of deep convective clouds, the rainfall assimilation tends to constrain 

the vigorous development of deep convective clouds by m n g  the PBL while at the same time 

force more shallow cumuli over a prolonged period to moisten the lower troposphere, thus 

providing a favorable condition for organized deep convection to occur later. These features are 

consistent with earlier observational studies on the tropical hydrologic cycle associated with the 

intraseasonal oscillation and westerly wind burst. It is well known that many GCMs tend to 

precipitate too much, and too frequently over the warm pool, and have difficulties to well 

represent important tropical waves such as the intraseasonal oscillation. The precipitation 

assimilation, which uses rainfall information to correct some biases in the model moist physics, 

may provide a good opportunity to better understand and correct the model physical deficiencies. 

- 

The impact of assimilation experiments with and without rainfall data on the analysis and 

forecast of a midlatitude frontal system clearly indicate that the improved rainfall analysis is 

achieved through reasonable changes in the thermodynamic and dynamic fields that respond to 

the rainfall assimilation. The synoptic structure of temperature, moisture, winds, divergence, and 

vertical motion, as well as vorticity is more realistically oriented across the front, and the 

influence of rainfall assimilation can extend a few hundred kilometers outside of the raining area. 

Short-term forecasts using initial conditions assimilated with rainfall data also give slightly 

improved results. 

Further work is underway to investigate the physical and dynamical impact of rainfall 

assimilation at the intraseasonal and diurnal time scales. 
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Figure Legends 

Figure 1: (a) The 6-h averaged satellite rainfall retrievals (&day) fkom TRMM TMI, DMSP 

F13 and F14 SSM/I, EOS AQUA AMSR-E at 0600 UTC on 1 July 2002; (b) Rainfall difference 

between the satellite rainfall observation and the column model first guess sampled at satellite 

ground tracks; (c) Rainfall difference between the satellite rainfall observation and the column 

model optimized rainfall sampled at satellite ground tracks. 

Figure 2: (a) Time-mean satellite rainfall retrievals for July 2002; (b) Difference between satellite 

rainfall estimates and precipitation from the control sampled at satellite observations; (c) Same as 

(b) but for the Ocean-only experiment; (d) same as (b) but for the Ocean+Land experiment. Also 

shown are the computed spatial anomaly correlation (AC), bias, and error standard deviation. 

Figure 3: (a) Zonal mean rainrates (&day) fkom satellite rainfall retrievals (solid line), the 

control (dotted line) and the rainfall-assimilation (dashed line) runs for July 2002; (b) Zonal 

mean difference of mixing ratio (g/kg) between the rainfall-assimilation and the control runs; (c) 

Zonal mean difference of temperature (K) between the rainfall-assimilation and the control runs. 

Figure 4: Mixing ratio 0 - F residuals (bias and error standard deviation) against rawinsonde 

data over the Tropics and extra-tropics, ocean and land (50"s to 50°N, July 2002): control (solid 

line) and Ocean+Land (dashed line). 

Figure 5:  (a) Observed monthly-mean longwave flux (W m-2) from CERES ES-8 for July 2002; 

(b) Difference of July-mean longwave flux between the control run and the observed; (c) 

Difference of July-mean longwave flux between the rainfall-assimilation run and the observed. 

Figure 6: Same as Figure 5, but for TOA shortwave flux for July 2002. 

Figure 7: (a) Monthly-mean total cloud fkaction (%) fiom MODIS, (b) Control minus 

observation, and (c) Ocean+Land minus observation. 

Figure 8: Time series of precipitation (&day), TOA longwave and shortwave fluxes (W m-2), 

and high cloud fiaction (%) for a grid point in the Caribbean Sea (8 1 OW, 19"N) where the control 

run monthly-mean rain rate overestimates the observed. Observation (thin line with open circle), 
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the control run (thick dashed line), and the rainfall-assimilation run (thick solid line). 

Figure 9: Same as Figure 8, except for a grid point in the tropical Afi-ican Continent (2 1 "E, 8"N) 

where the control run monthly-mean rain rate underestimates the observed. 

Figure 10: Time series of precipitation (&day), difference of vertical mixing ratio profile 

(gkg), OLR (W m-2), and OSR (W m-2) between the rainfall-assimilation and the control run for 

a grid point in the western Pacific (160"E, 10"N) where the control run monthly-mean rain rate 

overestimates the observed. Observation (thin line with open circle), the control run (thick 

dashed line), and the rainfall-assimilation run (thick solid line). 

Figure 11: (i) Satellite rainfall retrievals (&day); (ii) surface rain rate (&day), 500 hPa 

geopotential height (m), 200 hPa wind ( d s )  from the control analysis; (iii) same as (b) but for 

the rainfall-assimilation analysis; (iiii) differences of surface rain rate, 500 hPa geopotential 

height, and 200 hPa wind between the rainfall-assimilation and the control runs, fkom 18OOUTC, 

4 July to 1800 UTC 9 July. 

Figure 12: RMS errors and spatial correlation of 6-hourly averaged rain rate from the control 

(solid lines) and rainfall-assimilation (dashed lines) analyses, respectively. Combined satellite 

rainfall retrievals are used for verification. 

Figure 13: Vertical cross sections of temperature (K), mixing ratio (gikg), relative vorticity (1 .e6 

s-1) and vertical motion (hPdday) and their differences across the midlatitude frontal system. 

Figure 14. RMS errors and spatial correlation of 5-day forecasts of a midlatitude frontal system 

initialized from the control (solid lines) and rainfall-assimilation (dashed lines) analyses, 

respectively. 
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I Swathwidth I Equatorial I Microwave I Microwave I 
TRMM TMI 
DMSP F13 

(km) croising time channels fkequencies 
760 variable 5 5 
1700 6:16 AM 7 4 

S S M  
DMSP F14 

SSWI 
DMSP F15 

SSWI 
EOS AQUA 

AMSR-E 

Table 1 : Characteristics of satellites and sensors that provide microwave rainfall retrievals. 

1700 8:20 AM 7 4 

1700 9:27 AM 7 4 

1700 13:30 PM 12 6 

[ Tropics Mean Bias 1 Std. Dev 1 Correlation 

Observation 
Control 
Ocean only 
Ocean+land 

Table 2. Monthly mean spatial statistics of GEOS precipitation for the three experiments: 
control, ocean-only, and ocean+land in the Tropics and midlatitude. 

(&day) (&day) (&day) 
2.788 
3.834 1.0453 3.382 0.7078 
3.081 0.293 1 2.950 0.7521 
2.895 0.1066 2.250 0.8536 
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Midlatitude 

Observation 
Control 
Ocean only 
Ocean+land 

Mean Bias Std. Dev Correlation 

2.322 
2.147 -0.1750 1.812 0.5957 
2.202 -0.1201 1.677 0.6686 
2.123 -0.1985 1.342 0.7670 

(&day) (&day) (&day) 



Observation 
Control 

Ocean only 
Ocean+land 

(&day) (&day) ( d d a y )  
2.599 
2.829 0.2304 3.831 0.5785 
2.790 0.1909 4.028 0.5694 
2.344 -0.2544 2.409 0.7588 

Table 3. Monthly mean spatial statistics of GEOS precipitation for the three experiments: 
control, ocean - only, and ocean+land over the ocean and the land. 
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P&an+land I 250.4 I 93.3 I 7.2 I -17.7 I 7.2 I 22.1 I 0.965 1 . 8 0 7  I 

Ocean Mean Bias Std. Dev. Correlation 

I Land I Mean I Bias I Std.Dev* I 

Table 4: Monthly-mean spatial statistics of GEOS TOA long wave and short wave fluxes for the 

three experiments: control, ocean-only, and ocean+land in the Tropics and midlatitudes, over 

the ocean and the land. 
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a) SSM/I. TMI and AMSR-E Retrievals 

I 
60E 120f 180 120w SOW 

60s 0 

0 2 4 6 8 1 0 2 0 4 0  

b) First Guess Minus Obs., STD=27.6 
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6OE 120E 180 12ow 60W 

60s 
0 

- 8 - 4 - 1  1 4  8 

c) Pcp Assirn Minus Obs., STD=20.8 

MIS 

-8 -4 -1 1 4 8 

Figure 1 : (a) The 6-h averaged microwave rainfall retrievals (&day) f?om TRMM TMI, DMSP 

F13, F14, and F15 S S M ,  and EOS AQUA AMSR-E centered at 0600 UTC on 1 July 2002; (b) 

Rainfall difference between the microwave rainfall observation and the column model first guess 

sampled at satellite ground tracks; (c) Rainfall difference between the microwave rainfall 

observation and the column model optimized rainfall sampled at satellite ground tracks. 
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Monthly-maan pmcipitaiian (mm/day, July 2002) 

SSM/I, TMI and AMSR-E grecipitation. Mean=2.640 

Ocean-Only minus Obs., AC=0.741, Bias=O. 1 14, STDV=2.580 

, ., . 

Control minus Obs., AC=0.685. Bias=0.606, STDV-3.017 

Ocean+Land minus Obs., AC=0.845, Bias=O.O057', STDV=I .9( i 

Figure 2: (a) Time-mean microwave rainfall retrievals for July 2002; (b) Difference between 

satellite rainfall estimates and precipitation fiom the control sampled at satellite observations; (c) 

Same as (b) but for the Ocean-only experiment; (d) same as (b) but for the Ocean+Land 

experiment. Also shown are the computed spatial anomaly correlation (AC), bias, and error 

standard deviation. 
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Figure 3: (a) Zonal mean rainrates (&day) fiom satellite rainfall retrievals (solid line), the 

control (dotted line) and the rainfall-assimilation (dashed line) runs for July 2002; (b) Zonal 

mean difference of mixing ratio (gkg) between the rainfall-assimilation and the control runs; (6) 

Zonal mean difference of temperature (K) between the rainfall-assimilation and the control runs. 
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Figure 4: Mixing ratio 0 - F residuals (bias and error standard deviation) against rawinsonde 

data over the Tropics and extra-tropics, ocean and land (50"s to 50°N, July 2002): control (solid 

line) and Ocean+Land (dashed line). 
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Monthly-mean TOA Longwave Flux (W/m++2, July 2002) 

CERES ES-8. Mean=255.3 
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Figure 5: (a) Observed monthly-mean TOA longwave flux (W m-2) from CERES ES-8 for July 

2002; (b) Difference of July-mean longwave flux between the control run and the observed; (c) 

Difference of July-mean longwave flux between the rainfall-assimilation run and the observed. 
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Monthly-mean TOA Shortwave Flux (W/m++2. July 2002) 
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Figure 6: Same as Figure 5 ,  but for TOA shortwave flux for July 2002. 
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Monthly-mean total cloud fraction ( X .  July 2002) 

MODIS TERRA and AQUA, Mean=69.47 
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Figure 7: (a) Monthly-mean total cloud fiaction (%) fiom MODIS, (b) Control minus 

observation, and (c) Ocean+Land minus observation. 
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On. grid point in tho Carrlboan S a  (8lW. 1QN. July 2002) 
(tho modo1 wmmmtfmaiaa tho a b i m d  ralnfall) 
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Figure 8: Time series of precipitation (&day), TOA longwave and shortwave fluxes (W m-2), 

and high cloud fi-action (%) for a grid point in the Carribean Sea (8loW, 19"N) where the control 

run monthly-mean rainrate overestimates the observed. Observation (thin line with open circle), 

the control run (thick dashed line), and the rainfall-assimilation run (thick solid line). 
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One grld point In the troplcal African ContInont (21E, 8N. July 2002) 
(the model und.rrNmoC.a the o b i m d  rainfall) 

Rain (rnrn/day), rrns-control=26.4, rrns-assirni.=25.0 
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Figure 9: Same as Figure 8, except for a grid point in the tropical Afr-ican Continent (21"E, 8"N) 

where the control run monthly-mean rainrate underestimates the observed. 
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On# grld polnt In ths h p h a l  wssbrn Paelflc (lSOE, 10N. July 2002) 
(tho mods1 womdmatas tho obwnrod rainfall) 
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Figure 10: Time series of precipitation (&day), difference of vertical mixing ratio profile 

(gkg), OLR (W m-2), and OSR (W m-2) between the rainfall-assimilation and the control run 

for a grid point in the western Pacific (160°E, 1 O O N )  where the control run monthly-mean 

rainrate overestimates the observed. Observation (thin line with open circle), the control run 

(thick dashed line), and the rainfall-assimilation run (thick solid line). 
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1800 UTC. 4 July 

1800 UTC. 7 July 

L 

Control Anolvsir 

Figures 1 l a  and 1 lb: (i) Satellite rainfall retrievals (&day); (ii) surface rainrate (&day), 500 

hPa geopotential height (m), 200 hPa wind ( d s )  fiom the control analysis; (iii) same as (b) but 

for the rainfall-assimilation analysis; (iiii) differences of surface rainrate, 500 hPa geopotential 

height, and 200 hPa wind between the rainfall-assimilation and the control runs. 
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0600 UTC, 8 July 

Satellite roh  observation Control Analysis 
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PRECIP Analvsis 
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1800 UTC. 9 July 
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Figure 12: Rms errors and spatial correlation of 6-hourly averaged rainrate from the control 

(solid lines) and rainfall-assimilation (dashed lines) analyses, respectively. Combined satellite 

rainfall retrievals are used for verification. 
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T-control 

Q-control Q-assirni 

c 

Figure 13a: Vertical cross sections of temperature (K), mixing ratio (gkg), and their differences 

across the midlatitude fkontal system. The contour intervals for temeratures and their differences 

are 10 K and 0.5 K, respectively. The contour intervals for mixing ratio and their differences are 

1 g k g  and 0.5 gkg, respectively. The mixing ratio values above 8 gkg  are darkly shaded. 
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Omega-control 
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Figure 13b: Vertical cross sections of relative vorticity (1.e6 s-1), vertical motion (Wdday), and 

their differences across the midlatitude frontal system. The contour intervals for vorticity and 

their differences are 20 x10-6 S-1 and 5 x10-6 S-1, respectively. The contour intervals for mixing 

ratio and their differences are 50 Wdday. The vorticity and omega values above 20 x10-6 S-1 

and 50 Wdday (below -20 x10-6 S-1 and -50 Wdday) are darkly (lightly) shaded. 
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RIMIS and Gormhtlon of a May torercast 
initla1 condition: 0300 UTC, 06 JUIY 
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Figure 14. Rms errors and spatial correlation of 5-day forecasts of a midlatitude ftontal system 

initialized from the control (solid lines) and rainfall-assimilation (dashed lines) analyses, 

respectively. 
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